If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t+t^2-20=0
a = 1; b = 3; c = -20;
Δ = b2-4ac
Δ = 32-4·1·(-20)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{89}}{2*1}=\frac{-3-\sqrt{89}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{89}}{2*1}=\frac{-3+\sqrt{89}}{2} $
| √3t+t^2-20=0 | | (8+32y)-12y=28 | | 3x/12=4/6 | | 17=y+(10y-5) | | w-8.8=7.23 | | 8(2d+3)=12(d+3) | | 2x+4=10x-4 | | 8x/7-1=31 | | 5x+22+3x+41+2x+9+1x+10+4x+20+1x+18=360 | | |4x-2|+4=10 | | y2-6y+4=0 | | 5b/2=25 | | 4x+2x+25+5x-10=180 | | a/5=6×3 | | 1-3x=3x+25 | | 17=-3(23-x)+2(x-2) | | 2x+14÷7x+14=4÷7 | | 2x+14/7x+14=4/7 | | 3x+14-8x=16-17x+12x-2 | | 4b=2b+7 | | 26x-8-16x+3=20x-7-10x+11 | | 26-8-16x+3=20x-7-10x+11 | | 5x-9x+12=2x+30 | | 1/2+2/15+1/10+u=1 | | 3x-7/3-2x+3/6=3 | | 0=5²-2x+6 | | 46-2x+124=180 | | 8-5x=2x(4+x) | | 6x-54+118-2x=180 | | 2a=a-18° | | 26x-7-15x+3=21x-6-10x+13 | | 2x+13+115=180 |